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SUMMARY

A semigrasphical analysls method has been devised to evaluate the
effectiveness and dynamic stability of rolleron roll-rate dampers on
miggile configurations. The necessary charts, equatlons, and the anal-
ysis procedure have been presented. The greatest utility of these charts
and of the method outlined is that, once & polnt on the charts has been
established at a given flight condition, 1f the response is not accept-
able then the necessary modifications to the paremeters of the system
are readily seen.

INTRODUCTION

Present-day misslle configuratione possess, in general, inherently
low aerodynamic roll damping. This is a consequence of the predominance
of low-aspect-ratio lifting surfaces, which are the primary source of
serodynamic roll dsmping on conventional missiles. Rolling moments
caused by lifting surface misalinements as well as combined engles of
attack and sideslip may be of appreciable megnitude, and, as a result,
rolling velocitles are often produced which are well above the maximum
allowed by the mlssile guidance system. A common solution of this prob-
lem is to install in the missile & servomechanism system which senses
roll rate and furnishes a signal to & servo which actuates an aileron in
the proper mammer to oppose the rolling motion. The components for this
roll control system, unfortunately, require misslle space and the unavoid-
gble complexity of the rate gyro tends to reduce the overall relisbllity
of the missile. An urgent need therefore exists for & purely aeromechan-
ical roll damper utilizing no internsl missile components.

In reference 1 an analysis and flight test of a mechanlcally simple
roll damper is described. In order to explore the applicabllity of this
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type of damper on other misslile configurations, an extension and general-
izatlon of the anelysis reported therein has been performed and 1s reported
in this paper. Design charts from which the static and dynamic character-
istics of the roll mode can be obtained are presented. No attempt has
been made, herein, tc analyze any one particular missile completely with
respect to the relatlive lmportance of the alrframe and control surface
paremeters involved. Rather, equations and charts are presented to facil-
itate and expedite the analysis, design, and installation of this type of
roll dsmper on missliles in general. An example of the use of these deslign
charts 1s included for one particular missile configuration.

SYMBOLS
A normalized coefficient of characteristic equation
B normalized coefflclent of characteristlc equation
b wing span, ft
H B, -
Cn hinge-moment coefficient, e

Ch8 = égg, per radlsn

o1
oCp,
Cps = —%» per radian
B 329
2v
L _ ' _ _
CZ rolling-moment coefflcient, 555 -
Czo external rolling-moment coefficient _ .
3¢,
Clp = —2, per radian
b
325
v
oy
CZS =557 Per radisn (applies to only one surface)
D nondimensional differential operator, Té%

dst
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F conversion factor

H hinge moment, ft-1b

Ig moment of inertia of gyro wheel about spin exis, slug-ft2
Ip rolleron product of inertia,\jp uv dm, slug-ft2

Control .
surface
I moment of inertia of rolleron sbout hinge line, slug-ft2
2

I, = TIg - nk

Re TR " PR

Iy moment of Inertie of missile about longitudinal exis, slug—ft2
E,S,E unit vectors along the X-, Y-, and Z-axes, respectively

(orthogonal vectors)
k =
IR/IRC

L rolling moment, ft-1b

M Mach number

m mass of rolleron, slugs
my mass of rolleron gyro wheel, slugs

n number of rollerons on missile

P differentlal operator, é%

)

a dynamic pressure, 1b/sq £t

S total wing aree in one plane, sq ft

8 nondimensional differentisl operastor, D/F

T time constant, , sec

\A'LH
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u distance measured from hinge line, £t

v missile velocity, ft/sec

v distance measured from longltudinal exis, fT

ay ,%o real roots of normalized characteristic equation
s control-surface angular deflection, radians

g damping ratio of a quadratlic factor

é density of air, slﬁgs/cu 't

Po sea-level air density, 0.002378 slug/cu ft

o air-density ratio, p/po

@ missile roll angle, radians

T15TpsT3 real roots of characteristic equation -

w' nondimensional undamped natural freguency
W gyro-wheel angular velocity, radians/sec

Wp undamped natural frequency, radians/sec
Subscript: _
ISiS] gteady state

ROLLERON OPERATING PRINCIPLE

A diagremmatic sketch of the roll damper is shown in figure 1. The
roll control surface is mounted on the wing tip and 1s hinged forward of
the center of pressure to produce staeble hinge-moment charscteristics.

A gyro wheel 1s enclosed within the control surface with its spin axis
perpendicular to the plane of the control surface. Because of the angu-
lar velocity of the gyro wheel Wwgs Precessional hinge moments will act

on the control surface whenever the missile has a rolling velocity .
For the arrangement sketched, the control-surface deflection, caused by
the precessional hinge moment, generates an aerodynsmic rolling moment
on the missile opposite to the assumed direction of roll velocity. Thus,
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resistance to rolling is generated and the roll damping of the missile
has been increased. The adopted name for this roll damper is rolleron
and will be used for the remainder of this report.

Only one rolleron is indicated in the sketch; however, from longi-
tudinal coupling consilderations pairs of symmetrically located rollerons
may be necessary or perhaps desiraeble. It should be noted that this roll-
control system does not provide a roll-position reference and will not
give zero roll rate in the presence of any sustained moment about the
longitudinal axis of the missile.

ANATYSTS

In the analysis to follow, linerarized equations are used throughout.
Only the rolling motion 1s considered. This simplification is Jjustified
on the basis of the resulis reported in reference 1 in whlch a similar
anelysls was performed on & specific missile and roll stability was pre-
dicted and experimentelly confirmed in the presence of pltching and
yawing oscillaetions.

Equations of Motion

If no pltching or yawling motion of the misslle is assumed and 1f n
rollerons are mounted on the missile, the following equatlons are valid:

For the missile:

For the rolleron:

T (IG“C) . IR .e . b . _ .
-q§b¢+ aSb ¢+qu5_Ch8(W>5—Ch85—O (2)

Equation (1) is obtained by summing moments sbout the longitudinal
axls of the missile and contains, in addition to the conventional sero-
dynamic and inertia terms (Clp’ Cza, and IX), the rolleron product

of inertia I, &end the rolleron wheel gyroscopic term Igwg. Equation

(2) is derived by summing moments about the rolleron hinge line and
applies to any one of the n rollerons since each is undergoing a simi-
lar motion. The second equation contains the conventional serodynamic
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hinge-moment parameter Ch{5 and inertia parameter IR. The three
remeining terms TIguy, Ip, and ché are the rolleron gyroscopic term,

the rolleron product of inertia, and the control-surface demping param-
eter, respectively. (The derivation of the rolleron gyroscopic hinge
moments is presented in appendix A.) _

The equations of motion can be placed into a more useful form by
nondimensionalizing the time scale and by considering the rolleron product
of inertia as a modification of the rolleron foment of lnertia. See

appendix B. Thus, by letting the differential operator D = Td%b where

I
and aleo by letting k = B yhere _ IRc is the modified roll-

b
V Vo Ig,
eron moment of inertia, the equations of motion become _ S

(D - )¢ - (i—i D2 + 14D + za)na = £ (3)
(+BuD + ) + (kD2 - ByD - ng)® = 0 (%)
where
Sbo
P~ASb
Bg = aiRc Ong (6)
_Ig bug .
hyy = T TV B (1)
_ - -
hy = T (8)
V5 (005

p =5 WCZP (9)
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PoSb '
lg = C 10
3) 2Ty 15 (10)
1o = Eg G (11)
Ix vvo
3
PoSb
f = 12
( EIX )CZO (12)
and
Ip2
= - —_ 1
IRC IR n I (13)
The retio %- is plotted in flgure 2 as a function of Mach number

and altitude and o 1is plotted in figure 3 as a function of altitude.

Dynamic Characteristics
The oscillatory characteristics of the rolleron system are determined
by examination of the roots of the characteristic equation defined by the

simultaneous equations (3) and (4). The characteristic equation is given
as follows:

D + 8q D? + ap D + az =0 (1h)
Equation (14) can be reduced to the form

80 + As® +Bs +1 =0 (15)

by replacing the differentiasl operator D by Fs where

F =\as = \5/h51P + ohglg (16)
a =hy = k1
B = 2 _ hylp = hs + nhply - nhyls (18)
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In order to show the relationship between the normelized coeffi-
clents A and B and the system aerocdynemic and inertis parameters
defined by equations (5) to (1l1), two series of charts were prepared and
are presented in figures 4 and 5, respectively. The procedures for reading
these charts are similar. Theseé charts allow equations (17) and (18) to
be visualized graphlcally and reveal the relative contribution of the
various parameters of the system on the normalized coefficlents A and B.

The procedure for reading the A coefficilent chart (see sketch) is
as follows: '

e

kip

!

\‘i
}
|
|

|

When the four parameters hy, kzp, hszp, and nhyls have been calcu-

lated, then the dashed lines indicated are constructed on the plots and
thelr intersection determines the value of A. By following the dashed
line horizontally to the right from the correct nhyly contour line,

the value of F 1s also given; F 18 used later as a conversion factor
to obtain the correct time scale.

The roots of equation (15) that are of interest fall into two groups
depending on the values of A and B. These are as follows:

Group I (one real and two complex roots (¢ < 1)}):

L +—= 2] [52 + 2tw's + (w_')é_\ -0 (19)

(0")




NACA RM I56I12

Group IT (three real roots):

(s + “11“2)(8 +ay)(s +ag) =0 (20)

By setting equations (19) and (20) equal to equation (15) and equating
corresponding coefficlents, the following equations can be obtained:

For group I (0 < ¢ < 1),

A = 2tw' + (—w—})—,a- (21)
B=(o)?+ 22 (22)
For group II,
A= (g + o) + : (23)
B = apap + % (24)

The regions in the A-B plane where the roots represented by groups I

and IT exist are sketched in figure 6 for a limited range of A and B.
Only the first quadrant where A and B are both positive 1s shown, since
when either A or B is negative a dynamic instability exists and this
region is of no interest. The oscillatory stebllity boundary is located
where the product of A and B is equal to unity or where the damping
ratio § 1s equal to zero. The boundary separating the regions where
roots defined by groups I and II exist is obtained by setting { equal
to unity in equations (21) and (22). This boundary is fan-shaped and is
symmetrically located in the positive A-B plane. The point A =B =3
corresponds to the slituatlon where the normeslized cublc equation possesses
three real and equal roots.

This method of solving the cubilc equation was reported in reference 2
and the treatment here ls similer except for the description of the region
in the A-B plane occupled by roots corresponding to group II. The anbi-
gulty encountered in reference 2 is eliminasted by utilizing equation (20)
rather than equation (19) to represent the roots for group II.

Plots of A against B for constant values of (, o', ay, and oap

can be constructed using equations (21) to (24). These charts are shown
in figures 7 and 8 for 0< A< 28 and 0 < B < 202 for groups I and II,
respectively. For group II the o and o contours were plotted

\ XTI
e NI A
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rather than the o and op contours because the o; and oqon con-
tours intersect one another at nearly right angles and better definition

of the 'region is achieved.
Static Characteristics

Solving equations (3) and (4) for the steady-state values of D¢
and & to a constant input f leads to

[z\ _ bslp + mmyls
<D¢)ss hy (25)

4
or —(ﬁ%)ss = lp + nii 5 | (?5)“"_

and

_(g) S ; (27)
ss Szp + nh,ls
By inspecting equation (26), the additional increase in missile

steady-state roll damping contributed by the rollerons becomes apparent,
The inherent aerodynamic roll damping of the missile i1s proportional

to 1Ip and the rolleron contribution is proportional to hwzﬁ. When
5 ;

the rolleron wheel 1s not rotating, by, 1is equal to igro and no addi-
tional demping 1s present. ' -

Equations (25) and (27) are solved graphically in figure 9. The
procedure for finding _(;E) and -(%) is shown by the dashed lines
8s 88 -

g

in the following sketch of the rolleron steady-state chart:
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Conversion to Real Time

Because of the nondimensionallzing techniques employed, the dynamic
and static characteristics obtained from the charts are in a dimension-
less time scale. Conversion to real time may be accomplished by multi-
plication of the time constants and natural frequencies involved by the
appropriate factors.

Dynamic characteristics.- The system characteristlic equation with
d

the differentiel operator p = = is as follows:
For group I,
1 OnP + On
where
_(F 1 -1
Ty = (T) o2 sec (29)
w, = (%)cn’, radians/sec (30)

For group II,

(p + "'l) (p + 1-2) (p + 'r3) =0 . (31)
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where
T = (%)a,l, sec-1 (32)
T = (%)a,z, sec~l (33)
5 = (%)—la;’ sec™t (34)

Since § 1is a nondimensional ratic and does not involve time, no
time conversion ls required.

Static characterlstlcs.- The steady-state equatlons are obtained by
multiplying equations (25) and (27) by the correct conversion factors as

follows:’
) 2 [P\ |z
b Vo <p Sb5> { (W)SS] (%)

2V /ss

), (e,

RESULTS AND DISCUSSION

From the results of the preceding analysis section, a semigraphical
procedure can be formulated which will reduce the analysis time required
to study the feasibility of the installetidon of rollerons on & specific
missile design. This graphical method to be outlined furnishes & con-
siderable amount of information concerning the dynamic stability and the
roll damping contribution of a given missile-rolleron configuration.

The following steps are required for this method:

Step l: Tebulate the missile and rolleron geometrical and inertia charac-
teristics S, b, Iy, Iy, IRc’ k, and Ip.

Step 2: Decide on the Mach number and altitude conditions to be studied
and then determine T and Vo from figures 2 and 3.
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Step 3: Estimate the aerodynamic coefficients Chs’ CIP, 015,
and ché and the rolleron gyro-wheel angular velocity g

Step 4: Compute hy, bhg, hys hy, 1Ip, 1§, 8nd 1, by using equa-
tione (5) to (11).

Step 5: From figures 4 and 5 determine the values of A, B, and F.
Check the product of A and B and if the value 1s less
than unity the system will require modification.

Step 6: From elther figure T or 8 (depending on the values of A and B),
determine the dimensionless factors of the normalized charac-
teristic equation.

Step T: Convert the dimensionless factors to real time using equa~
tions (29) and (30) or equations (32), (33), and (34).

Step 8: From figure 9, determine the static characteristics -(%%)
58

o)
B.Ild. bl Ty L]
(£)ee

Step 9: Convert the static characteristics to a more useful form by use
of equations (35) and (36).

The foregoing procedure 1s quite flexible in that the effect of
individual parameter changes does not require & reiteration of all nine
steps. This feature will be brought out in the following example.

Exemple

In order to illustrate the use of the charts, a typical problem will
be solved. The configuration reported in reference 1 1s chosen as the
missile to be analyzed. The steps in the design procedure give the fol-
lowing resulits when four rollerons are installed and the control surface
damping 1s assumed to be equal to zero:

Step 1:

mn
I

= 2.75 sq £t

UJ
It

1.75 £t

Iy = 0.299 slug-ft?
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Step 1 - Continued:
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0.000201 slug-ft2

0.000581 slug-ft2

1.21

0.003L slug-ft2

M=2.0

Altitude = 20,000 ft

Ig
IRc
k
Ip
Step 2:
Step 3:
Ch8=
¢, =
p
Cc., =
i3
Cre =
hy
%:
Step U:
hy =0
hS = —0.0942
hyy = 0.159
by = 5.3

T = 0.,00115 sec,

Vo = 0.73

~-0.00324, per radian ;
~0.282, per radian

0.020%, per radian

0

40O radians/sec -

-klp = 0.00695
hgl, = 0.00054L
nhply = 0.000719
-hg - nhylg = 0.070L
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Step 4 - Continued:

Ip = -0.005T% hylp + nhgle = 0.000196
lg = 0.00113
1w = 0.000308
Step 5:
A = 0.0643 B =8.1
AB = 0.521 F = 0.108

Note here’ that the product of A and B 1s less than unity which
corresponds to the region in the A-B plane where a dynamic instability
exists. Therefore, there is no reason to proceed any further without
modifying the rolleron system. A possible modificetion to the systenm
would be to introduce control-surface damping about the rolleron hinge
line. Repeatling step 5 for hy = =0.5 glves

Step 5:
A= k.69 B =8.35
AB = 39.2 F = 0.108
Step 6:.
t =0.82 o' = 2.77
Step T:
T, = 12.2 sec-l
¢t = 0.82
w, = 256 radians/sec
Step 8:
(D%,)Ss = 0.0L34
-126.2

)ee ®
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Step 9:

Cio : .

—_ = 0.653 per radian

bp

-5.16 radians

/EF”\
[
N
m
[42]
L
Il

After experience has been acquired with the charts and with the
misslle being investigated, systematic system variation can be tried
and an acceptable design flx established.

The greatest utility of these charts and of the method outlined is
that, once a point in the A-B plane has been established at a given
flight condition, if the response 1s not acceptable then the change in
elther A or B or both which will yield an acceptable response 1s
readily seen. Then, it is only necessary 1o investigate the A &and B
coefficient plots to determine which parameters of the system must be
modified to move the point in the A-B plane to the desired position.
Depending upon the configuration under investigation, different param-
eters willl probably be critical. However, from a study of two missile
configurations, it was found necessary in both cases tc increase A by
increasing the system parameter hy +to0 & degree where the contribution

of 1lp to the A coefficlent was negligible.

CONCILUDING REMARKS

A semigraphical analysis method has been devised to evaluate the
effectiveness and dynamic stability of rolleron roll-rate dampers on
misslle configurations. The necessary charts, equations, and the anal-
veis procedure have been presented. The grestest utility of these
charts and of the method outlined is that, once a point on the charts
has been established at a given flight condition, 1if the response is
not acceptable then the necessary modifications to the system parameters
are readlly seen.

Laengley Aeronsutical Iaboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., August 23, 1956.
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APPENDIX A
ROLLERON GYROSCOPIC HINGE MOMENTS

The vector expression relating the gyroscoplc hinge moment ﬁb to

the missile angular velocity @y, and the rolleron gyro-wheel angular
velocity @; 1s (see ref. 3) as follows:

By = Teig X Gy + Iy (a1)

where J 1s the moment of inertia of the gyro wheel about an axis nor-
mal to the spin axis and I; 1s the moment of inertia of the gyro wheel

ebout the spin axis. The angular velocity of the missile am 1s rep~

resented by & vector having three component gbout the X-, Y-, and Z-axes,
respectively. Thus,

@n = $1 + 83 + ¥k (a2)

The vector expression for the gyro-wheel angular veloclty is readily
found once the control-surface angular deflectlion is known and the geo-
metric position of the wheel with respect to the axlis system is speci-
fied. Two cases are considered here: (1) rollerons coincident with
the X-Y and X-Z planes and (2) rollerons in a 45° plane between the X-Y
and X-Z plenes. These two cases are sketched for four rollerons - des-
ignated n =0, 1, 2, and 3:

Case II

&

%51 _— e
W R Ry
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Case I.- It can be shown that the gyro-wheel angular veloclty vec-
tor @ 1is given by the following expressfon: ) '

(—sin Bgl + cos %"— cos 8pJ + sin %ﬂ cos SRE) (a3)

7, = |,
where n = 0, 1, 2, and 3. Substituting equations (A2) and (A3) into
equation (Al) leads to the following equation:

_'ﬁGh = IG[ZEGnl [(-sin % cos SRé + cos n—e"- cos 6R\|r)£ +

m L) . -
(sin & cos Bg¢ + sin SRW),j +
(;cos %‘l cos Bpf - sin 5Re) l;] + JFL + J6) + JUk (Ak)
The vector EGn will not, in general, be coincident with the hinge

line; however, the scalar expression for the hinge moment gbout the
correct axls may be obtained by taking the dot produc¢t of Hy into a
n

unit vector En along the hinge line:

- = _ . E A_
g, =8, " tn . (45)
where
Uy = -sin %‘3 + cos éﬂi - (A6)
Therefore,

e B e 8-
(—cos %’: cos 6R§3 - sin %é)(eos %“—)] +

J'e.(-sin %) + J'u;<cos _n_;r_) (A7)
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Case II.- For case II, the gyro-wheel angular velocity vector
becomes

ann mGn [—sin Sl + sin(2n + 1)1[ cos BpJ + cos(2n + l)E cos SRkJ (48)

Substituting equations (A2) and (A7) into equation (Al) yields
_ﬁc_n = IGla"an\ [-cos(zn + :L)% cos SRG + sin(2n + l)% cos BR\y]i
[cos(zn + l)ﬁ cos SR¢ + sin SR\VJS +
[-'sin(a:l + l)ﬁ cos SRé - sin SRG] ]-s} +
J63 + 303 + Jyk (A9)

The dot product of iGn into a unlt vector along the rolleron
hinge line gives

-Hy_ = HGn . [—cos(Zn + l)ﬁ-s + sin(2n + l)ﬁ-];] (ALO)
or

_HGn = IGlaSGnl{-COS(zn + 1)%[::05(&1 + l)ﬁ cos SR¢ + sin SR‘V] +
sin(2n + l)ﬁ \E—sin(an + 1)7’} cos SR¢ - sin SRQ:’} +

ES [-cos(an + 1)3{-} + 3V [sin(Zn + 1)%] (411)"

If it is assumed that the misslle is undergoing no pi:b_chiz.lg or ya.wing
motion and thet the rolleron is not deflected, then By =6 =8 =¥ =¥ =0
and the equation for the gyroscopic hinge moment for cases I and II become:

For cese I,

a o (—sin2 921!- @ - cos? % ¢) (A12)
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For case II,

-Hg, = Iglacnl[-cose(2n + l)ﬁ¢ - sin?(2n + l)ﬁé] (AL3)
Equations (Al2) and (Al13) reduce to -
B, = To Eenjsé (ALL)

Bquation (Al4) implies, with the assumption of pure rolling motion
and small control-surface deflections, that the gyroscopic hinge moment
is independent of its orientation. Therefore, equation (Al4%) will apply
to any one of the rollerons on the missile. -
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SIMPLTFICATION OF THE EQUATIONS OF MOTION FOR THE ROLLERON SYSTEM

The equations of motion (egs. (1) and (2) in the text) of the mis-
sile and rolleron comblnation are as follows:

For the missile,

Ix .e .b . EB__ - IGax} - _
£ ¢ Clp<2v)¢ nZ5-n quSb 8 - mcyd = Oy (B1)
For the rolleron,
Ip . (Tewa) o IR b\:
- B - - =
55P g + =0 @ + 350 5 ché(ﬁ.)s chas o (B2)
sb3
a Po
By letting D =T I and multiplying equations (Bl) and (B2) by —
X
3 :
and PoSb , respectively, the followlng equations result:
R
I
(o - )08 - (E%D2+zap+za>n8=f (83)
I
-2p+n D+ (D? - hy'D - hys')8 =0 (Bk4)
I 5

where 1p, 1lg, Iy, 8nd f are defined by equations (9) to (12) and
where

h,' =Yo oo . s
2 \21g / B5

2Ty o)

TR
SR YA

.
,ﬂ. g ST
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The characteristic equation is thus:

a0'D> + a1'D2 + as'D + az' =0 - (B5)
where

ag' =1 - n[2)(Ip (86)

© Ix/\Ir
E.l' = 'hV" - ZP (37)

I

&s' = hy'lp - hg' + nhy'ly - iﬁ ly (88)
&3' = ha'lp + nhw'ls (B9)

It will now be proved that the ag' coefficient can be normalized
by modifying the moment of inertia Ig of the control surface without
chenging the values of the roots of equation (B5). If equation (B2) is _

Sp2
multiplied by pg , ‘the equations of motion become -

Re

(D - zp)pgzs - G__E D2 + 1D + Za)nﬁ = f (B10)

I IR -
(-I—llgign+hw)v¢+<-fﬁgnz-hvn-h5)s-o (B11)

Expanding the stebility determinant by using the simultaneous equa-
tions (B10) and (Bll) leads to the following results for the frequency
equation:

aoD5 + alD2 + apD + az = 0 (B12)
where =
1 < IP2) ( )
an = —— [In - n —=— B13
0 R
IRe Ix
I _
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as = ~hg + hylp - n %';—_ 1g + nhyly (B15)
C
az = hyly + nhyls (BL6)
.2
When Ip 1is defined as Iy - n —P—, it can easily be shown thet
C’ IX
ag = ao'<53—) -1 (B17)
_ IRe
a) = &lr<ER_> (B18)
Rc
T
Rc
8.5 = 8.5'(-1—3——) (BEO)
Re
or
T
ap = &p’ @—) (n=0,1, 2, 3) (B21)
C

Since a ratlional, algebraic polynomial of the form given by equa-
tion (B5) can be multiplied by a comnstant without changing the values
of the roots, equation (B2L) implies that the roots of equations (B1l2)

I
and (B5) are identical inasmuch as B is & constant.
c
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